Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(1): 763-773, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346059

RESUMO

Hydrogen sulfide (H2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2 S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2 S on glycolysis-mediated energy production. The purpose of this study was to determine the effect of H2 S on glycolysis-mediated energy production in mitochondria-free mouse RBCs. Western blot analysis showed that the only H2 S-generating enzyme expressed in mouse RBCs is 3-mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2 S. Both exogenously administered H2 S salt and MST-derived endogenous H2 S stimulated glycolysis-mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2 S levels and MST activity in mouse RBCs. The mitochondria-targeted H2 S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3-100 µM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300-1000 µM) lowered ATP levels, but prolonged cell viability. H2 S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen-independent energy production.


Assuntos
Sulfeto de Hidrogênio , Trifosfato de Adenosina/metabolismo , Animais , Eritrócitos/metabolismo , Glicólise , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipóxia , Mamíferos/metabolismo , Camundongos
2.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R69-R78, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432916

RESUMO

The production of H2S and its effect on bioenergetics in mammalian cells may be evolutionarily preserved. Erythrocytes of birds, but not those of mammals, have a nucleus and mitochondria. In the present study, we report the endogenous production of H2S in chicken erythrocytes, which was mainly catalyzed by 3-mercaptopyruvate sulfur transferase (MST). ATP content of erythrocytes was increased by MST-generated endogenous H2S under normoxic, but not hypoxic, conditions. NaHS, a H2S salt, increased ATP content under normoxic, but not hypoxic, conditions. ATP contents in the absence or presence of NaHS were eliminated by different inhibitors for mitochondrial electron transport chain in chicken erythrocytes. Succinate and glutamine, but not glucose, increased ATP content. NaHS treatment similarly increased ATP content in the presence of glucose, glutamine, or succinate, respectively. Furthermore, the expression and activity of sulfide:quinone oxidoreductase were enhanced by NaHS. The structural integrity of chicken erythrocytes was largely maintained during 2-wk NaHS treatment in vitro, whereas most of the erythrocytes without NaHS treatment were lysed. In conclusion, H2S may regulate cellular bioenergetics as well as cell survival of chicken erythrocytes, in which the functionality of the electron transport chain is involved. H2S may have different regulatory roles and mechanisms in bioenergetics of mammalian and bird cells.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Eritrócitos/metabolismo , Sulfeto de Hidrogênio/farmacologia , Trifosfato de Adenosina/sangue , Animais , Galinhas , Transporte de Elétrons/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Glucose/farmacologia , Glutamina/farmacologia , Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Succínico/farmacologia , Sulfurtransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...